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Abstract. We investigate the dynamics of peeling of an adhesive tape subjected to a constant pull speed.
Due to the constraint between the pull force, peel angle and the peel force, the equations of motion
derived earlier fall into the category of differential-algebraic equations (DAE) requiring an appropriate
algorithm for its numerical solution. By including the kinetic energy arising from the stretched part of
the tape in the Lagrangian, we derive equations of motion that support stick-slip jumps as a natural
consequence of the inherent dynamics itself, thus circumventing the need to use any special algorithm. In
the low mass limit, these equations reproduce solutions obtained using a differential-algebraic algorithm
introduced for the earlier singular equations. We find that mass has a strong influence on the dynamics
of the model rendering periodic solutions to chaotic and vice versa. Apart from the rich dynamics, the
model reproduces several qualitative features of the different waveforms of the peel force function as also
the decreasing nature of force drop magnitudes.

PACS. 5.45.-a Nonlinear dynamics and chaos – 68.35.Np Adhesion – 02.90.+p Solution of differential-
algebraic equation

1 Introduction

The phenomena of adhesion has attracted attention due
to scientific challenges it poses as well as for their indus-
trial importance. Science of adhesion is truly interdisci-
plinary involving a great variety of different interrelated
physical phenomena like friction, fracture, mechanics of
contact, visco-plastic deformation and interfacial proper-
ties such as debonding and rupture of adhesive bonds.
Detailed mechanisms of such a complicated mixture of
phenomena are not yet well understood.

Tests of adhesion are essentially fracture tests designed
to study adherence of solids and generally involve normal
pulling off and peeling. Peeling also provides a rich in-
sight into fracture mechanics as the dynamics is highly
nonlinear and shows a variety of instabilities and complex
structures. Furthermore, peeling experiments are compar-
atively easy to setup in laboratory and the recorded re-
sponse helps to extract useful information on the nonlinear
features of the system.

The first detailed experimental study on peeling of an
adhesive tape was due to Maugis and Barquins [1]. These
experiments carried out at constant pull speed condition
show that peeling is jerky within a window of pull speeds
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accompanied by acoustic emission [2,3]. Constant load
experiments have also been carried out recently [4,5]. The
experimental strain energy release rate G shows two stable
branches separated by an unstable branch. At low applied
velocities, the peeling front keeps pace with the pull ve-
locity and the failure mode is cohesive whereas at high
pull velocities, the failure is adhesive. If the pull speed is
within some intermediate range, one sees stick-slip oscilla-
tions. These authors report that the pull force shows a rich
variety of behavior ranging from sinusoidal, sawtooth and
highly irregular (chaotic as these authors refer to) wave
patterns with increasing pull speeds [1]. They also report
that the average amplitude of the pull force decreases with
increasing pull speeds.

Apart from detailed experimental investigation of the
peeling process, Maugis and Barquins [1], have also con-
tributed substantially to the understanding of the dynam-
ics of the peeling process by writing down preliminary set
of equations relevant for the experimental situation and
carrying out dynamical analysis of the equations under
certain approximations [1]. Indeed, Maugis identifies Hopf
bifurcation as the cause of stick-slip oscillations [1,6]. Hong
and Yue [7] modified these equations and carried out a dy-
namical analysis using an ‘N’ shaped function to mimic the
dependence of the peel force on the rupture speed. They
reported that the system of equations exhibits periodic
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and chaotic stick-slip oscillations. However, the jumps in
the rupture speed were introduced externally once the rup-
ture velocity reached the limit of stability [8]. Thus, the
stick-slip oscillations are not obtained as a natural conse-
quence of the equations of motion. Indeed, the fact that
dynamical jumps in the rupture velocity (across the two
branches) cannot be obtained from these equations was
later recognized by Ciccotti et al. [2]. For this reason,
these authors interpret the stick-slip jumps as catastro-
phes. Recently we derived these equations starting from a
Lagrangian and showed [9] that these equations are singu-
lar, and fall in the category of differential-algebraic equa-
tions (DAE) [10] requiring an appropriate algorithm. Us-
ing a DAE algorithm, we showed that stick-slip jumps
across the two branches arise in a pure dynamical way.
The dynamics was also shown to be much richer than an-
ticipated earlier.

However, even though the DAE algorithm is a nice
mathematical framework for obtaining solutions for these
singular equations, it is difficult to provide any physical
interpretation for the perturbed ‘mass matrix’ that re-
moves the singularity. Thus, it is necessary to identify the
missing physics responsible for the absence of dynamical
jumps in these equations. Our investigations in this direc-
tion show that a time scale corresponding to the kinetic
energy of the stretched part of the tape is missing in the
original model equations [11]. Using the Lagrange’s equa-
tions of motion, we derive equations of motion which show
that once kinetic energy of the tape is included, the set of
differential-algebraic equations are converted to a coupled
set of ordinary differential equations (ODE). We shall re-
fer to the modified model as the ODE model. In the limit
of zero mass of the tape, i.e., when the inertial time scale
of the tape is small, the solutions obtained from the ODE
model match that from DAE. The purpose of this paper
is to provide a comprehensive comparative study of the
ODE solutions and the DAE solutions for the entire range
of parameter space, extending the preliminary results pub-
lished earlier [11]. We shall also comment on the utility of
this regularization procedure adopted here to other DAE
type of equations.

2 Model

Here we start by considering the geometry of the experi-
mental setup shown schematically in Figure 1. An adhe-
sive roller tape of radius R is mounted on an axis pass-
ing through O normal to the paper and is driven by a
couple meter motor positioned at O′ with constant speed
V . The pull force F acting along the line PO′ subtends
an angle θ at the contact point P . The contact point P
moves with a local velocity v which can under go rapid
bursts in the velocity during rupture. (We recall here that
the peel force function f(v) measured in experiments in
steady state conditions goes as an input.) Let the distance
from the center of the roller tape O to the motor O′ be l.
The peeled length of the ribbon, PO′ is denoted by L and
as peeling point P is not fixed L also changes. The point
P subtends an angle α at O, with the horizontal line OO′.

R
α

P

L

O lω

θ

O

Fig. 1. Schematic plot of experimental setup.

We denote the moment of inertia of the unwinding roller
by I, the elastic constant of the adhesive tape by k, the
elastic displacement of the tape by u, the angular velocity
by ω. As the contact point is not fixed, the angular ve-
locity is identified by ω = α̇ + v/R. The geometry of the
setup gives L cos θ = −l sin α and L sin θ = l cosα − R
which further gives, L2 = l2 + R2 − 2lR cosα. As peeling
point P moves, The total velocity V is made up of three
contributions [1], given by V = v + u̇ − L̇, which gives,

v = V − u̇ + L̇ = V − u̇ − R cos θ α̇. (1)

Now to derive the equations of motion, we start with the
LagrangianL = UK−UP where UP is the potential energy
of the stretched ribbon and UK is the kinetic energy of the
system given by

UK =
I

2
ω2 +

m

2
u̇2, (2)

where first term represents the kinetic energy of the roller
tape and second term arises due to kinetic energy of the
stretched part of the tape [12]. Here, m is the mass of the
tape of length L which we shall often refer to as just mass,
and I the moment of inertia of the roller tape. The over
dot on u refers to the time derivative.

We write the dissipation function as

R = Φ(v, V ) =
∫

f(v, V )dv, (3)

where f(v, V ) physically represents the peel force which
we assume is dependent on the rupture speed, v, as well as
the pull speed, V (see below). Further, f(v, V ) is assumed
to be derivable from a potential function Φ(v, V ).

The existence of velocity weakening law is quite com-
mon to many driven dissipative systems which exhibit
stick-slip instability [13], for instance, sliding friction [14]
and the Portevin-Le Chatelier (PLC) effect [15–17] to
name only two. Indeed, there is a considerable similarity
between the PLC effect [15–17] and the peeling prob-
lem which has been noted earlier [1]. Briefly, the PLC
effect refers to a kind of plastic instability observed when
metallic alloys are subjected to constant strain rate defor-
mation. In a range of strain rates and temperatures, stress
exhibits different types of serrations with increasing strain
rate (or decreasing temperature) that are associated with
different types of dislocation bands. The physical mech-
anism causing different types of serrations and the band
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types is the repeated pinning and unpinning of disloca-
tions in solute atmosphere of the alloy. On a macroscopic
scale this translates to the negative strain rate sensitivity
of the flow stress. This feature which is at the root of the
PLC instability is similar to the velocity weakening fea-
ture of the peel force function in peeling of an adhesive
tape.

More importantly, as in the case of the peeling prob-
lem where one finds decreasing amplitude of the peel force
drops with increasing pull speed, the amplitudes of the
PLC stress drops also decrease with increasing applied
strain rate. In the case of the PLC effect, at low strain
rate, the plastic relaxation has enough time to come to
completion as the time scale of deformations is large. On
the other hand at high strain rates, there is insufficient
time for plastic relaxation. Thus, the physical cause of
this decreasing amplitude of the serrations with applied
strain rate has been attributed to incomplete plastic re-
laxation [16–18]. As demonstrated in reference [18], this
amounts to assuming the negative strain rate sensitivity
(SRS) of the flow stress f(ε̇p) to depend, not just on the
plastic strain rate ε̇p, but on the applied strain rate, ε̇a

as well. The dependence on f(ε̇p, ε̇a) is such that the gap
between the maximum and the minimum of the function
f(ε̇p, ε̇a) decreases with increasing ε̇a [18]. This has been
termed a dynamization scheme to reflect a competition
between the time scale of plastic relaxation with the time
scale of applied strain rate.

Unlike the PLC effect where a large body of literature
exists [16,17] that has been used to understand the un-
derlying mechanisms contributing to the negative strain
rate sensitivity of the flow stress, in the case of peeling
of adhesives, very little is known about the causes lead-
ing to presence of the unstable branch in the peel force
function. However, following studies on stick-slip dynam-
ics [13], one can trace the physical origin of the velocity
weakening law as arising due to the competition between
the internal relaxation time scale of the viscoelastic fluid
and the time scale determined by the applied velocity [3].
When the applied velocity is low, there is sufficient time
for the viscoelastic fluid to relax. As we increase the ap-
plied velocity, the relaxation of the fluid gets increasingly
difficult and thus behaves much like an elastic substance.

Following the case of the PLC effect [18], we argue that
the effective peel force function should depend on pull ve-
locity. The crucial step is to recognize that the two stable
branches of the peel force function correspond to station-
ary peel situation. However, considering the well known
rate dependence of deformation of adhesives, it is clear
that when the pull velocity is in the instability domain,
the extent of peel and hence the magnitude of the peel
force are dynamical quantities. More specifically, the peel
bursts are accompanied by loading, unloading and reload-
ing. Considering the frequency dependence of the elas-
tic constant [19], the magnitude of force attained during
reloading depends on the extent of viscoelastic relaxation
that has occurred during the preceding force drop. This, in
principle, would be different for each force drop. Thus, the
force seldom reaches the values prescribed by stationary

branches. Moreover, an increase in the pull speed amounts
to a decrease in viscoelastic relaxation which in turn leads
to a reduction in the magnitude of dynamical force. Thus,
the peel force function should depend on V also. Using
the experimental fact that the magnitude of the force
drop decreases toward the end of the instability domain,
we modify the peel force function in a way that reduces
the gap between maximum and minimum of the effective
peel force function. Clearly, in the absence of additional
experimental or theoretical support (quite unlike in the
PLC effect), there is no unique way to modify the peel
force function. We have therefore parameterized the form
of f(v, V ) so as to decrease the gap between the (dynamic)
force maximum and minimum to follow the generally de-
creasing trend of the force wave form. This is given by

f(v, V ) = 402v0.34 + 171v0.16 + 68e(v/7.7)

− (415 − 45V 0.4 − 0.35V 2.15)v0.5

− 2V 1.5, (4)

to depend on the pull velocity V . This form mimics the
velocity weakening behavior [1]. Here, it must be stressed
that studies on the PLC effect[16,17] as also general stick-
slip dynamical systems [13] have demonstrated that the
basic features of the stick-slip phenomenon can be recov-
ered without knowing the exact form of f(v, V ) as long
as f(v, V ) contains the velocity weakening branch. One
aspect that should be incorporated properly is the extent
of velocity bursts. This feature has been included in the
above expression.

Using the Lagrange equations of motion,

d

dt

(
∂L
∂α̇

)
− ∂L

∂α
+

∂R
∂α̇

= 0, (5)

d

dt

(
∂L
∂u̇

)
− ∂L

∂u
+

∂R
∂u̇

= 0. (6)

and using (α, α̇, u, u̇) as generalized coordinate, we get

α̈ = − v̇

R
+

R

I

cos θ

(1 − cos θ)
f(v, V ), (7)

mü =
1

(1 − cos θ)
[ f(v, V ) − k u(1 − cos θ)]. (8)

These equations in their present form are still not suitable
for further analysis as they have to satisfy the constraint
equation equation (1). In the spirit of classical mechanics
of systems with constraints (see Ref. [20]), we derive the
equation for the acceleration variable v̇ in the constraint
equation by differentiating equation (1) as

v̇ = −ü + R sin θ θ̇ α̇ − R cos θ α̈. (9)
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Using equations (7), (8) in equation (9) gives

α̇ = ω − v/R, (10)

ω̇ =
R

I

cos θ

(1 − cos θ)
f(v, V ), (11)

u̇ = V − v − R cos θ α̇, (12)

v̇ =
[
ku

m
− f(v, V )

m(1 − cos θ)
− (R cos θ)2f(v, V )

I(1 − cos θ)

+
R

L
α̇2(l cosα − R(cos θ)2)

]
/(1 − cos θ). (13)

3 Differential-algebraic equations
and its algorithm

In low mass limit, equation (8) becomes

F (1 − cos θ) − f(v, V ) = 0. (14)

Then the equations of motion can be written

α̇ = ω − v/R, (15)

ω̇ =
FR

I
cos θ, (16)

u̇ = (V − v) − cos θ(ωR − v), (17)
0 = F (1 − cos θ) − f(v, V ). (18)

These equations were derived and studied by Hong and
Yue [7]. Later, these equations have been studied by sev-
eral authors [2,3] We note that equation (18) is an alge-
braic constraint that should be respected at all times by
the α, ω and u that evolve in time and hence the above set
is classified as DAE. Equations (15)–(18) can be written
as

MẊ = ξ(X), (19)

where X = (α, ω, F, v), ξ is a vector function that governs
the evolution of X and M is a singular “mass matrix” [10]
given by,

M =

⎛
⎜⎝

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0

⎞
⎟⎠ .

Equation (19) can be solved using the so called singular
perturbation technique [10] in which the singular matrix
M is perturbed by adding a small constant ε such that the
singularity is removed. The resulting equations can then
be solved numerically and the limit solution obtained as
ε → 0 [9].

4 Equations of motion in scaled units

It is a general practice to write all equations of motion in
scaled form. To do this, we first identify the basic length
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Fig. 2. Plots of φ(vs, V s) as a function of vs for V s = 1.45,
2.9, and 5.8 marked by solid, dashed and dotted curves respec-
tively. (V s = 1.45 refers low velocity regime and V s = 5.8 high
velocity regime.)

and time scales. A natural choice for a time like variable
is to use

τ = ωut; ω2
u = k/m. (20)

Let, fmax be the maximum value of the peel force f(v, V )
on the left stable branch. Then, using a basic length scale
can be defined by d = fmax/k, we can define all scaled
lengths by u = Xd, l = lsd, L = Lsd, and R = Rsd. The
peel force f can be written as

f = fmax φ(vs, V s), (21)

where vs = v/vcωud and V s = V/vcωud are the dimen-
sionless peel and pull speeds respectively. Here,
vc = vmax/ωud is dimensionless critical velocity at which
the unstable branch starts and vmax is the maximum
value of v in the unscaled variables. In addition, we define
Cf = (m/I)(fmax/k)2.

Now, φ in scaled unit can be written as

φ(vs, V s) =
(

1
280.8

)[
402(vmaxvs)0.34 + 171(vmaxvs)0.16

−
(
415 − 45(vmaxV s)0.4 − 0.35(vmaxV s)2.15

)
(vmaxvs)0.5

+68e(vmaxvs/7.7) − 2(vmaxV s)1.5

]
, (22)

which is shown in Figure 2. Note that the maximum of the
left stable branch of the scaled peel force φ has been nor-
malized to unity by dividing f by fmax = 280.8, the max-
imum value of the peel force f(v, V ) curve on the left sta-
ble branch for V = 1. Since, vmax, at which the unstable
branch starts, shifts as ωud changes with m, we have also
scaled all the velocities with respect to vc = vmax/ωud.
The range of pull velocities V in unscaled form ranges from
V = 0.4 to 4. Thus, the curve corresponding to V = 0.4
in the scaled form would have the maximum value of φ
less than unity and those corresponding to larger than
V = 1 would have maximum at higher values than unity
as shown in Figure 2.
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In scaled units, the equations of motion for α, α̇, X and
vs take the form

α̈ =
1

(1 + ls

Ls sinα)

[
− X

Rs
+

φ(vs, V s)
Rs(1 + ls

Ls sinα)

−α̇2

(
− Rs

Ls

(
ls

Ls
sinα

)2

+
ls

Ls
cosα

)

− ls

Ls

CfRsφ(vs, V s) sin α

(1 + ls

Ls sin α)

]
, (23)

Ẋ = (V s − vs)vc +
ls

Ls
Rs sinαα̇, (24)

v̇s =
1

vc(1 + ls

Ls sinα)

[
Xs − φ(vs, V s)

(1 + ls

Ls sinα)

+Rsα̇2

(
− Rs

Ls

(
ls

Ls
sin α

)2

+
ls

Ls
cosα

)

−Cfφ(vs, V s)(Rs sin α ls

Ls )2

(1 + ls

Ls sin α)

]
(25)

and the over dots now denote differentiation with respect
to τ .

The fixed point of equations (23)–(25) is given by α =
0, α̇ = 0, X = φ(vs, V s) and vs = V s. This point is
stable for φ′(vs, V s) > 0 and unstable for φ′(vs, V s) < 0.
As V s is varied such that the sign of φ′(vs, V s) changes
from negative to positive value, the system undergoes a
Hopf bifurcation and a limit cycle appears. The limit cycle
reflects the abrupt jumps between the two positive slope
branches of the function φ′(vs, V s).

5 Results

Solutions obtained using the DAE algorithm as also the
approximate solutions have been investigated in detail [9].
Our aim here is to report a comparative study of the DAE
solutions with the ODE solutions for the entire range
of parameters. We have solved the equations of motion
(Eqs. (23)–(25)) by adaptive step size stiff differential
solver (MATLAB package) and studied the dynamics of
the system of equations for a wide range of values of the
parameters. The results reported here are obtained after
the long transients are omitted. Here, we report a few
representative solutions for Cf and V s keeping Rs = 0.35
and ls = 3.5. We note that Cf depends linearly on the
mass of the stretched tape m and inversely on the inertia
of the roller I. It also depends on other parameters
(fmax and k). We note that vc represents the scaled
critical velocity at which the unstable branch starts that
depends on mass m for fixed fmax and k values. However,
we note that the value of vc is known once f(v, V ) is given.

Case 1: low mass limit
Here, we present some typical results. We begin by

first showing that in the low mass limit (which refers to
the mass of the tape), we essentially recover the DAE
solutions reported in reference [9]. In this limit, i.e., low
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Fig. 3. Plot of α(τ ), X(τ ), and vs(τ ) for Cf = 0.788 (vc =
0.0008) corresponding to low roller inertia (I = 10−5), low tape
mass (m = 10−4), and V s = 1.45 (low pull velocity, V = 1).
Phase space trajectory in the vs −X plane and corresponding
φ(vs, V s) is shown by a bold line.

kinetic energy of the tape case, the right hand side of
equation (8) is small, and thus

k u(1 − cos θ) = F (1 − cos θ) ≈ f(v, V ), (26)

which is the algebraic constraint that makes the equa-
tions singular. Thus, one expects that the DAE solutions
are reproduced for small mass which we have verified for
the entire range of values of the roller inertia and pull
velocity V s. For all practical purposes, m = 10−4 can
be taken to be the low mass limit as the solutions are
very similar to the DAE solutions. As an example of solu-
tions for low mass limit, we first report the dynamics for
Cf = 0.788, V s = 1.45 (for which vc = 0.0008) which rep-
resents low inertia of the roller(I = 10−5), low mass of the
tape (m = 10−4), and low pull velocity regime (V = 1.0)
in terms of unscaled variables. Figures 3a–3d illustrates
α(τ), scaled force X(τ), scaled peel velocity vs(τ), and the
corresponding phase plots in V s − X plane. These plots
are essentially similar to the DAE solution reported ear-
lier (for example compare Figs. 3b and 3d with Figs. 4b
and 4c in Ref. [9]). The saw tooth nature of the force has
been observed in experiments.

Case 2: high mass limit
As we go to the high mass limit, the inertial time scale

corresponding to the kinetic energy of the stretched part of
the tape increases. Much more complex dynamics emerges
as a result of a competition between this additional time
scale and other time scales present in the model equations.
We shall illustrate the effect of increasing mass m on the
dynamics for high values of roller inertia. For the sake
of comparison, we first consider the case for high roller
inertia (I = 10−2) and low mass limit (m = 10−4, i.e.,
DAE solution), for Cf = 0.000788 (vc = 0.0008) and for
low pull velocity V s = 1.45. Plots of α(τ), scaled force
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Fig. 4. Plot of α(τ ), X(τ ), and vs(τ ) for Cf = 0.000788 (vc =
0.0008) and V s = 1.45. This corresponds to the high roller
inertia (I = 10−2), low tape mass (m = 10−4), and low pull
velocity (V = 1). Phase space trajectory in the vs − X plane
and corresponding φ(vs, V s) is shown by a bold line.

X(τ), scaled peel velocity vs(τ), and the phase plots in
vs − X plane are shown in Figures 4a–4d . This can be
compared with high roller inertia (I = 10−2) and high
mass limit (0.1), i.e., keeping Cf = 0.788 (vc = 0.024)
and V s = 1.45 illustrated in Figures 5a–5d for the same
variables. It is evident from Figures 4a–4d and Figures 5a–
5d that the influence of the additional time scale on all the
variables is substantial. In particular, from Figure 5d, one
can see that the orbit never jumps to the high velocity
branch when the mass is large. More importantly, we note
that the orbits spends substantial time in the region of the
unstable branch. This is quite unusual. Such solutions are
known as canard solutions [21]. Note also that the sharp
changes in all the variables seen in the plot (Figs. 4a–
4c) for the low mass limit (i.e., the DAE solutions) are
rendered smooth for large mass case (Figs. 5a–5c).

To understand this, consider equation (8). It is clear
that the inertial contribution from the stretched tape is
the difference between the (given stationary) peel force
and the dynamic force F (t) which increases with mass.
Further, rewriting equation (9), we get

mv̇ + mü + mR cos θ α̈ = mR cosα (α̇)2 (27)

where, we have used sin θ θ̇ ≈ cos α α̇. From this, it is
clear that sum of the instantaneous peel force, the inertial
force and that due to rotation arising from abrupt peeling
has to be matched by a positive dissipation (right hand
side). As shown in reference [9], for the zero mass case,
i.e., the DAE solution jump abruptly when the limit of
stability is reached. With increase in mass, increased
levels of inertial contribution implies that the velocity
has to be lesser than that corresponding to zero mass; in
particular, the peel acceleration across the two branches
has to be lesser which is the underlying cause of the
orbit not visiting the high velocity branch of f(v, V ) or
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Fig. 5. Plot of α(τ ), X(τ ), and vs(τ ) for Cf = 0.788
(vc = 0.024) and V s = 1.45. This corresponds to the high
roller inertia (I = 10−2), high tape mass (m = 0.1), and low
pull velocity (V = 1). Phase space trajectory in the vs − X
plane and corresponding φ(vs, V s) is shown by a bold line.

φ(vs, V s). Thus, the relaxational character wherein one
finds regions of very slow changes followed by abrupt
changes in the variable v [22,23], is removed by the
inclusion of the inertial contribution.

Case 3: high roller inertia and high pull velocity

Increasing mass does not always increase the level of
complexity of the solutions. As an example, Figures 6a–
6d show plots for high pull velocity V s = 5.8 case for
Cf = 0.000788 (vc = 0.0008) which corresponds to the low
mass limit (m = 10−4) and high roller inertia (I = 10−2).
It is clear that the force is nearly sinusoidal as demon-
strated earlier which however has fine structure at the
top and the bottom. This manifests in the form of a
bunching of large amplitude velocity bursts. Note also
that the dynamic force far exceeds the force values de-
termined by force-velocity curve. In addition, the force-
velocity phase plot also appears to be quite complex which
can be shown to be chaotic. These features can be com-
pared with the plots of Figures 7a–7d for the same vari-
ables for Cf = 0.788 (vc = 0.024) for high mass limit
(m = 0.1) and high roller inertia (I = 10−2). While the
ODE solution for small mass is similar to that of DAE
which exhibits several sharp busts in velocity (Fig. 6c),
the large mass case, vs(τ) is surprisingly simple and is
periodic (Fig. 7c). Indeed, the striking difference between
the complex phase plot vs − X for low mass case (the
DAE case) and the simple limit cycle plot for high mass
is evident from Figures 6d and 7d respectively.

Finally, the complex nature of the orbit for certain
values of parameter space can be quantified by calculating
the Lyapunov spectrum. The irregular nature of the phase
plot (Fig. 5d) is suggestive of chaotic dynamics is tradi-
tionally quantified by the existence of a positive Lyapunov
exponent. We have calculated largest Lyapunov exponent
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Fig. 6. Plot of α(τ ), X(τ ), and vs(τ ) for Cf = 0.000788
(vc = 0.0008) and V s = 5.8. This corresponds to the high
roller inertia (I = 10−2), low tape mass (m = 10−4), and high
pull velocity (V = 4). Phase space trajectory in the vs − X
plane and corresponding φ(vs, V s) is shown by a bold line.
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Fig. 7. Plot of α(τ ), X(τ ), and vs(τ ) for Cf = 0.788
(vc = 0.024) and V s = 5.8. This corresponds to the high roller
inertia (I = 10−2), high tape mass (m = 0.1), and high pull
velocity (V = 4). Phase space trajectory in the vs − X plane
and corresponding φ(vs, V s) is shown by a bold line.

for these parameter values. The exponent turns out to be
∼0.06 s−1 (Fig. 8) which is a signature of a chaotic state.
In contrast, the largest Lyapunov exponent for a periodic
orbit (for instance Fig. 4d) turns out to be small ∼–0.0007
which can be considered to be essential zero as should be
expected of a periodic orbit.

Another quantitative result that can be compared with
experiment is the decreasing trend of the force drop mag-
nitude with the pull velocity reported earlier (see Fig. 6
of [9]). The same trend is seen for the ODE model in the
low mass limit both for low and high roller inertia cases.
Figure 8b shows the monotonically decreasing trend of the
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Fig. 8. (a) Largest Lyapunov exponent for Cf = 0.788 (vc =
0.024) and V s = 1.45 corresponding to high tape mass, high
roller inertia and low pull velocity. (b) The plot shows the mean
X drop (∆X) as a function of the pull speed, V s, for low mass
limit. The dashed line corresponds to high roller inertia while
the dotted line corresponds to small roller inertia.

average ∆X(τ) as V s is increased, for both small and large
roller inertia, a feature observed in experiments [1]. These
two distinct behaviors are a result of the dynamization of
φ(v, V ) as in equation (22). However, for high mass limit,
this result is not seen.

6 Summary and discussions

In summary, the two proposed methods, namely the dif-
ferential algebraic algorithm and the set of ordinary differ-
ential equations resulting from the inclusion of the kinetic
energy of the tape resolve the controversy surrounding the
original model. These equations support dynamical jumps
across the two stable branches of the peel force function
as natural consequence of the equations of motion. The
differential-algebraic algorithm, however, contains an ar-
bitrary small parameter in perturbed mass matrix. As no
physical meaning is attributable to this perturbed mass
matrix, a re-examination of the derivation of the equations
of motion shows that there is a missing time scale corre-
sponding to the kinetic energy of the stretched tape. Once
this term is included, it lifts the singular nature of the orig-
inal model equations. We have presented a detailed com-
parative study of the regularized equations with that from
differential algebraic equations. Solutions corresponding
to the low mass limit of the tape agree with that provided
by the DAE algorithm. There are host of other types of



482 The European Physical Journal B

solutions for large mass of the tape including chaotic and
canard type of solutions not exhibited by the DAE model.

From a purely physical point of view, the complex dy-
namics observed in experiments on peeling could be at-
tributed to the highly nonlinear nature of the peel force
function and possibly due to different competing time
scales. Apart from providing an algorithmic basis for ob-
taining dynamical jumps across the two stable branches of
the peel force function (DAE), the next level of investiga-
tion (addition of kinetic energy of the tape) demonstrates
the importance of including all the relevant variables and
the associated time scales. This underscores the fact that
just the negative force-velocity relation in itself cannot
capture the full dynamics. It is worth pointing out that
in two dimensions, discussions on relaxational oscillations
show that the trajectories jump at the point of instability
while the orbits stick and evolve slowly on the stable man-
ifolds [22,23]. While this feature is not expected to hold
in three dimensional phase space, the present approach
shows that the addition of one more time scale can en-
hance the complexity of the dynamics substantially.

While the methodologies introduced resolve the con-
troversy surrounding the model, comparison with experi-
ments is limited only to qualitative features due to paucity
of quantitative experimental results. Even so, our analysis
shows that the average amplitudes of the drops in the pull
force decreases as seen in experiments. Apart from this,
several different waveforms observed in experiments such
as the saw tooth, sinusoidal and irregular (chaotic) solu-
tions are predicted by the model. Finally, we note that
Maugis and Barquin [1] report irregular solutions, which
they call chaotic (without any quantitative analysis) in
a mid region of the instability. Assuming irregular wave
forms correspond to chaotic solutions, in our model, they
are also seen only a mid range of pull speeds. As the pres-
ence of chaotic solutions in mid range of instability is also
common to the PLC effect, both in experiments [24–26]
as well as in a model [17,27], some explanation is desir-
able. In both cases, the instability begins with a forward
Hopf bifurcation and ends with a reverse Hopf bifurcation.
The limit cycle emerging out of forward Hopf bifurcation
needs to go through further bifurcations (to higher peri-
odic states) before terminating in chaos. Similarly, as the
instability is terminated by a reverse Hopf bifurcation,
there should be periodic states beyond chaotic domain.

Our studies also show that the mass of the tape has
a strong influence on the nature of the dynamics. For
low pull velocities, and high I, the complexity increases,
i.e., trajectories that are not chaotic for low mass become
chaotic with increasing m. In some case, the orbits spend
considerable time on the unstable branch never visiting
the second branch. These orbits are reminiscent of ca-
nard [21] type of solutions. Clearly, these type of solu-
tions emerge as a consequence of the new inertial time
scale which essentially prevents the orbit from jumping to
the stable branch at high velocity. In contrast, for high V ,
the trajectories that are chaotic for low m are rendered
non chaotic with increase of m.

At a purely mathematical level, it appears that the
present approach of introducing a time scale that lifts the
singularity may have implications to the general class of
differential-algebraic equations. It may be pointed here
that with the addition of the kinetic energy term, the al-
gebraic constraint is converted into a second order differ-
ential equation rather than a first order one, the latter
would have been closer to the perturbed mass matrix in
mathematical structure. Conversion of the algebraic con-
strain into a second order differential equation clearly can-
not be universal. For instance, it is entirely possible that
the missing physics could well be due to a damping mech-
anism which would make the differential equation to be
first order. However, in cases where the differential alge-
braic equations of motion are derivable from Lagrangian
or Hamiltonian formalism, it might be easier to recognize
the missing time scale and therefore the form of differen-
tial equation resulting from the constrain equation.

The recognition of the missing physics has also other
gains. The introduction of the kinetic energy of the
stretched tape provides a mechanism for converting the
potential energy stored in the stretched tape into kinetic
energy and hence provides a basis for explaining acous-
tic emission during peeling which has so far remained ill
understood. Indeed, we have extended the model to in-
clude spatial degrees of freedom along with an additional
dissipation functional arising from rapid movement of the
peel front. This extended model explains several features
of acoustic emission observed in experiments [28].

GA would like to acknowledge the grant of Raja Ra-
mana Fellowship and also support from BRNS Grant No.
2007/37/16/BRNS.

References

1. D. Maugis, M. Barquins, Adhesion 12, edited by K.W.
Allen (Elsevier, London, 1988), p. 205; D. Maugis, CRNS
Report. (1991)

2. M. Ciccotti, B. Giorgini, M. Barquins, Int. J. Adhes.
Adhes. 18, 35 (1998)

3. C. Gay, L. Leibler, Phys Today 52, 48 (1999)
4. M. Barquins, M. Ciccotti, Int. J. Adhes. Adhes. 17, 65

(1997)
5. M.C. Gandur, M.U. Kleinke, F.J. Galembeck, Adhes. Sci.

Technol. 11, 11 (1997)
6. D. Maugis, C.R. Acad. Sci. Paris 304, 775 (1987)
7. D.C. Hong, S. Yue, Phys. Rev. Lett. 74, 254 (1995)
8. D.C. Hong, Private communication
9. R. De, A. Maybhate, G. Ananthakrishna, Phys. Rev. E 70,

46223 (2004)
10. E. Hairer, C. Lubich, M. Roche, Numerical Solutions

of Differential-algebraic Systems by Runge-Kutta Methods
(Springer-Verlag, Berlin, 1989)

11. R. De, G. Ananthakrishna, Phys. Rev. E 71, R55201
(2005)

12. Actually, the kinetic energy at the peel front should be
m
6

u̇2. However, this does not alter the results
13. G. Ananthakrishna, R. De, Lecture Notes in Physics 705,

423 (Springer, 2006)



R. De and G. Ananthakrishna: Lifting the singular nature of a model for peeling of an adhesive tape 483

14. B.N.J. Persson, Sliding Friction: Physical Principles and
Applications, 2nd edn. (Springer, Heidelberg, 2000)

15. A. Portevin, F. Le Chatelier, C.R. Acad. Sci. Paris 176,
507 (1923); F. Le Chatelier, Rev. de Métal. 6, 914 (1909)

16. L.P. Kubin, C. Fressengeas, G. Ananthakrishna, Collective
Behaviour of Dislocations, in Dislocations in Solids,
edited by F.R.N. Nabarro, M.S. Deusbery (North-Holland,
Amsterdam, 2002), Vol. 11, p. 101

17. G. Ananthakrishna, Statistical and Dynamical Approaches
to Collective Behaviour of Dislocations in Dislocations in
Solids, edited by J. Hirth, F.R.N. Nabarro (North-Holland,
2007), Vol. 13, p. 81; Current Theoretical Approaches to
Collective Behaviour of Dislocations, Phys. Rep. 440, 113
(2007)

18. L.P. Kubin, K. Chihab, Y. Estrin, Acta. Metall. 36, 2707
(1988)

19. P.G. de Gennes, Langmuir 12, 4497 (1996)

20. E.C.G. Sudarshan, N. Mukunda, Classical Dynamics: A
Modern Perspective (John Wiley and Sons, New York,
1974)

21. M. Diener, The Mathematical Intelligence 6, 38 (1984)
22. N. Minirsky, Nonlinear Oscillations (Van Nostrand,

Princeton, New Jersey, 1962)
23. S.H. Strogatz, Nonlinear Dynamics and Chaos (Westview

Press, 2000)
24. G. Ananthakrishna, M.C. Valsakumar, Phys. Lett. A 95,

69 (1983)
25. G. Ananthakrishna et al., Phys. Rev. E 60, 5455 (1999)
26. M.S. Bharathi, et al., Phys. Rev. Lett. 87, 165508 (2001)
27. G. Ananthakrishna, M.S. Bharathi, Phys. Rev. E 70,

26111 (2004)
28. R. De, G. Ananthakrishna, Phys. Rev. Lett. 97, 165503

(2006)


	Introduction
	Model
	Differential-algebraic equations and its algorithm
	Equations of motion in scaled units
	Results
	Summary and discussions
	References

